Low-rank matrix factorization with attributes

نویسندگان

  • Jacob D. Abernethy
  • Francis R. Bach
  • Theodoros Evgeniou
  • Jean-Philippe Vert
چکیده

We develop a new collaborative filtering (CF) method that combines both previously known users’ preferences, i.e. standard CF, as well as product/user attributes, i.e. classical function approximation, to predict a given user’s interest in a particular product. Our method is a generalized low rank matrix completion problem, where we learn a function whose inputs are pairs of vectors – the standard low rank matrix completion problem being a special case where the inputs to the function are the row and column indices of the matrix. We solve this generalized matrix completion problem using tensor product kernels for which we also formally generalize standard kernel properties. Benchmark experiments on movie ratings show the advantages of our generalized matrix completion method over the standard matrix completion one with no information about movies or people, as well as over standard multi-task or single task learning methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward semantic attributes in dictionary learning and non-negative matrix factorization

Binary label information is widely used semantic information in discriminative dictionary learning and non-negative matrix factorization. A Discriminative Dictionary Learning (DDL) algorithm uses the label of some data samples to enhance the discriminative property of sparse signals. A discriminative Non-negative Matrix Factorization (NMF) utilizes label information in learning discriminative b...

متن کامل

Parallel Collaborative Filtering for Streaming Data

We present a distributed stochastic gradient descent algorithm for performing low-rank matrix factorization on streaming data. Low-rank matrix factorization is often used as a technique for collaborative filtering. As opposed to recent algorithms that perform matrix factorization in parallel on a batch of training examples [4], our algorithm operates on a stream of incoming examples. We experim...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Nonnegative matrix factorization (NMF), which aims to approximate a data matrix with two nonnegative low rank matrix factors, is a popular dimensionality reduction and clustering technique. Due to the non-convex formulation and the nonnegativity constraints over the two low rank matrix factors (with rank r > 0), it is often difficult to solve NMF efficiently and accurately. Recently, the altern...

متن کامل

Interpolative Butterfly Factorization

This paper introduces the interpolative butterfly factorization for nearly optimal implementation of several transforms in harmonic analysis, when their explicit formulas satisfy certain analytic properties and the matrix representations of these transforms satisfy a complementary low-rank property. A preliminary interpolative butterfly factorization is constructed based on interpolative low-ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0611124  شماره 

صفحات  -

تاریخ انتشار 2006